A matemática por trás das finanças pode ser um pouco confusa e entediante. Felizmente, a maioria dos programas de computador faz cálculos complexos. No entanto, é crucial entender os vários termos e métodos estatísticos, seus significados e quais analisam melhor os investimentos ao escolher a segurança apropriada e obter o impacto desejado em um portfólio.
Uma decisão importante é escolher entre distribuições normais versus distribuições normais, ambas frequentemente referidas na literatura de pesquisa. Antes de escolher, você precisa saber:
- No entanto, é importante ressaltar que, em alguns casos, é necessário que haja um número maior de pessoas.
Normal versus Lognormal
As distribuições normal e lognormal são usadas na matemática estatística para descrever a probabilidade de ocorrência de um evento. O lançamento de uma moeda é um exemplo de probabilidade fácil de entender. Se você jogar uma moeda 1000 vezes, qual é a distribuição dos resultados? Ou seja, quantas vezes ele pousará em cara ou coroa? Há uma probabilidade de 50% de que ele caia sobre cara ou coroa. Este exemplo básico descreve a probabilidade e a distribuição dos resultados.
Existem muitos tipos de distribuições, uma das quais é a distribuição normal ou curva de sino.
Imagem por Julie Bang © Investopedia 2019
Em uma distribuição normal, 68% (34% + 34%) dos resultados estão dentro de um desvio padrão e 95% (68% + 13, 5% + 13, 5%) estão dentro de dois desvios padrão. No centro (o ponto 0 da imagem acima), a mediana (o valor médio do conjunto), o modo (o valor que ocorre com mais frequência) e a média (média aritmética) são todos iguais.
A distribuição lognormal difere da distribuição normal de várias maneiras. Uma grande diferença está em sua forma: a distribuição normal é simétrica, enquanto a distribuição lognormal não é. Como os valores em uma distribuição lognormal são positivos, eles criam uma curva inclinada à direita.
Imagem por Julie Bang © Investopedia 2019
Essa distorção é importante para determinar qual distribuição é apropriada para uso na tomada de decisões de investimento. Uma distinção adicional é que os valores usados para derivar uma distribuição lognormal são normalmente distribuídos.
Vamos esclarecer com um exemplo. Um investidor deseja saber o preço esperado das ações futuras. Como as ações crescem a uma taxa composta, ela precisa usar um fator de crescimento. Para calcular os possíveis preços esperados, ela pegará o preço atual das ações e o multiplicará por várias taxas de retorno (que são fatores exponenciais matematicamente derivados com base na composição), que se supõe que sejam normalmente distribuídos. Quando o investidor combina continuamente os retornos, ele cria uma distribuição lognormal. Essa distribuição é sempre positiva, mesmo que algumas das taxas de retorno sejam negativas, o que ocorrerá 50% do tempo em uma distribuição normal. O preço futuro das ações sempre será positivo porque os preços das ações não podem cair abaixo de US $ 0.
Quando usar distribuição normal versus distribuição normal
O exemplo anterior nos ajudou a chegar ao que realmente importa para os investidores: quando usar cada método. O Lognormal é extremamente útil ao analisar os preços das ações. Contanto que o fator de crescimento usado seja normalmente distribuído (como assumimos com a taxa de retorno), a distribuição lognormal faz sentido. A distribuição normal não pode ser usada para modelar os preços das ações porque tem um lado negativo e os preços das ações não podem cair abaixo de zero.
Outro uso semelhante da distribuição lognormal é com o preço das opções. O modelo Black-Scholes - usado para precificar opções - usa a distribuição lognormal como base para determinar os preços das opções.
Por outro lado, a distribuição normal funciona melhor ao calcular o retorno total do portfólio. A distribuição normal é usada porque o retorno médio ponderado (o produto do peso de um título em um portfólio e sua taxa de retorno) é mais preciso na descrição do retorno real do portfólio (positivo ou negativo), principalmente se os pesos variarem de grande grau. A seguir, é apresentado um exemplo típico:
Participações de portfólio | Pesos | Devoluções | Devoluções ponderadas |
Estoque A | 40% | 12% | 40% * 12% = 4, 8% |
Estoque B | 60% | 6% | 60% * 6% = 3, 6% |
Retorno médio ponderado total | 4, 8% * 3, 6% = 8, 4% |
Embora o retorno normal do log para o desempenho total do portfólio possa ser mais rápido de calcular em um período mais longo, ele falha em capturar os pesos individuais do estoque, o que pode distorcer tremendamente o retorno. Além disso, os retornos do portfólio podem ser positivos ou negativos e uma distribuição lognormal falhará ao capturar os aspectos negativos.
A linha inferior
Embora as nuances que diferenciam as distribuições normal e lognormal possam nos escapar na maioria das vezes, o conhecimento da aparência e das características de cada distribuição fornecerá informações sobre como modelar os retornos do portfólio e os preços futuros das ações.
Comparar contas de investimento × As ofertas que aparecem nesta tabela são de parcerias das quais a Investopedia recebe remuneração. Nome do provedor DescriçãoArtigos relacionados
Ferramentas para Análise Fundamental
Usando métodos de distribuição de probabilidade de estoque comum
Gerenciamento de riscos
Os usos e limites da volatilidade
Conceitos avançados de negociação de opções
Como criar modelos de avaliação como Black-Scholes
Gerenciamento de riscos
Como usar a simulação de Monte Carlo com o GBM
Planejamento de aposentadoria
Planejando a aposentadoria usando a simulação de Monte Carlo
Ferramentas para Análise Fundamental
Noções básicas sobre medidas de volatilidade
Links de parceirosTermos relacionados
Quais são as hipóteses? Como funciona a distribuição de probabilidade Uma distribuição de probabilidade é uma função estatística que descreve possíveis valores e probabilidades que uma variável aleatória pode assumir dentro de um determinado intervalo. mais Aprenda sobre a assimetria A assimetria refere-se a distorção ou assimetria em uma curva simétrica de sino ou distribuição normal em um conjunto de dados. mais Como funciona o modelo de preços do Black Scholes O modelo do Black Scholes é um modelo de variação de preços ao longo do tempo de instrumentos financeiros, como ações que podem, entre outras coisas, ser usadas para determinar o preço de uma opção de compra européia. mais Tocando a curva de sino Uma curva de sino é o tipo mais comum de distribuição para uma variável e, portanto, é considerada uma distribuição normal. O termo "curva de sino" se origina do fato de o gráfico usado para representar uma distribuição normal consistir em uma linha em forma de sino. mais Entendendo a distribuição T A distribuição AT é um tipo de função de probabilidade apropriada para estimar parâmetros populacionais para amostras pequenas ou variações desconhecidas. mais Distribuição log-normal Uma distribuição log-normal é uma distribuição estatística de valores logarítmicos de uma distribuição normal relacionada. Mais